graph
TemporalGraph
¶
Bases: pathpyG.Graph
Source code in src/pathpyG/core/temporal_graph.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
order
property
¶
Return order 1, since all temporal graphs must be order one.
temporal_edges
property
¶
Return all temporal edges as a list of tuples (source, destination, timestamp).
Returns:
Name | Type | Description |
---|---|---|
list |
list
|
A list of tuples representing temporal edges in the format (source, destination, timestamp). |
Examples:
Get the list of temporal edges:
>>> g = pp.TemporalGraph.from_edge_list([('a', 'b', 1), ('b', 'c', 2), ('c', 'a', 3)])
>>> print(g.temporal_edges)
[('a', 'b', 1), ('b', 'c', 2), ('c', 'a', 3)]
Iterate over temporal edges:
__getitem__
¶
Return node, edge, temporal edge, or graph attribute.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
typing.Union[tuple, str]
|
name of attribute to be returned |
required |
Source code in src/pathpyG/core/temporal_graph.py
__init__
¶
Creates an instance of a temporal graph from a TemporalData
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
torch_geometric.data.Data
|
PyG |
required |
mapping
|
pathpyG.core.index_map.IndexMap | None
|
Optional mapping from node IDs to indices. |
None
|
Example
Source code in src/pathpyG/core/temporal_graph.py
__str__
¶
Return a string representation of the graph
Source code in src/pathpyG/core/temporal_graph.py
from_edge_list
staticmethod
¶
Create a temporal graph from a list of tuples containing edges with timestamps.
Source code in src/pathpyG/core/temporal_graph.py
get_batch
¶
Return an instance of the TemporalGraph that captures all time-stamped edges in a given batch defined by start and (non-inclusive) end, where start and end refer to the index of the first and last event in the time-ordered list of events.
Source code in src/pathpyG/core/temporal_graph.py
get_window
¶
Return an instance of the TemporalGraph that captures all time-stamped edges in a given time window defined by start and (non-inclusive) end, where start and end refer to the time stamps
Source code in src/pathpyG/core/temporal_graph.py
shuffle_time
¶
Randomly shuffle the temporal order of edges by randomly permuting timestamps.
to
¶
Moves all graph data to the specified device (CPU or GPU).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
torch.device
|
The target device to move the graph data to. |
required |
Returns:
Name | Type | Description |
---|---|---|
TemporalGraph |
pathpyG.core.temporal_graph.TemporalGraph
|
A new TemporalGraph instance with data on the specified device. |
Source code in src/pathpyG/core/temporal_graph.py
to_static_graph
¶
Return weighted time-aggregated instance of Graph
graph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weighted
|
bool
|
whether or not to return a weighted time-aggregated graph |
False
|
time_window
|
typing.Optional[typing.Tuple[int, int]]
|
A tuple with start and end time of the aggregation window |
None
|
Returns:
Name | Type | Description |
---|---|---|
Graph |
pathpyG.Graph
|
A static graph object |
Source code in src/pathpyG/core/temporal_graph.py
to_undirected
¶
Return an undirected version of a directed graph.
This method transforms the current graph instance into an undirected graph by
adding all directed edges in opposite direction. It applies ToUndirected
transform to the underlying torch_geometric.Data
object, which automatically
duplicates edge attributes for newly created directed edges.